發(fā)電機的形式很多,但其工作原理都基于電磁感應(yīng)定律和電磁力定律。因此,其構(gòu)造的一般原則是:用適當?shù)膶Т藕蛯щ姴牧蠘?gòu)成互相進行電磁感應(yīng)的磁路和電路,以產(chǎn)生電磁功率,達到能量轉(zhuǎn)換的目的。
發(fā)電機的分類:
直流發(fā)電機、交流發(fā)電機、同步發(fā)電機、異步發(fā)電機(很少采用);交流發(fā)電機還可分為單相發(fā)電機與三相發(fā)電機。
調(diào)控的目的就是實現(xiàn)在同步發(fā)電機額定負荷范圍內(nèi)穩(wěn)住輸出電壓。調(diào)控技術(shù)的理念是實時地從主發(fā)電機電樞取得電壓和電流經(jīng)整流和負反饋調(diào)理后供給勵磁機的定子線圈使其產(chǎn)生變化規(guī)律與主發(fā)電機輸出電壓變化規(guī)律相反的直流電磁場這個磁場也必然使勵磁機轉(zhuǎn)子電樞的輸出電壓及旋轉(zhuǎn)整流器供給主發(fā)電機轉(zhuǎn)子線圈的直流電流按同樣的規(guī)律而變化。從而起到實時調(diào)節(jié)主發(fā)電機轉(zhuǎn)子磁場大小使主發(fā)電機在額定負荷范圍內(nèi)保持良好輸出特性的作用。
對發(fā)電機輸出電壓的調(diào)節(jié)過程可以用以下的流程表示:
由于負荷增加使主發(fā)電機電樞電壓↓(降)→經(jīng)負反饋調(diào)理后勵磁機定子電流及磁場t→勵磁機轉(zhuǎn)子電樞輸出電壓+→旋轉(zhuǎn)整流器輸出電流t一主發(fā)電機轉(zhuǎn)子磁場t→使主發(fā)電機電樞電壓,若主發(fā)電機電壓升高則其反饋調(diào)控使以上各環(huán)節(jié)作用降低導致電壓回到額定值。通過勵磁機實時調(diào)控主發(fā)電機轉(zhuǎn)子磁場的大小就可以穩(wěn)住輸出電壓。這其中起重要作用的是負反饋調(diào)節(jié)單元通常稱其為恒壓勵磁裝置和自動電壓調(diào)節(jié)器。
There are many forms of generators, but their working principles are based on the laws of electromagnetic induction and electromagnetic force. Therefore, the general principle of its construction is to use appropriate magnetic and conductive materials to form magnetic circuits and circuits that induce each other electromagnetically, in order to generate electromagnetic power and achieve energy conversion.
Classification of generators:
DC generator, AC generator, synchronous generator, asynchronous generator (rarely used); AC generators can also be divided into single-phase generators and three-phase generators.
The purpose of regulation is to achieve stable output voltage within the rated load range of synchronous generators. The concept of regulation technology is to obtain real-time voltage and current from the armature of the main generator, rectify and regulate them through negative feedback, and supply them to the stator coils of the exciter to generate a DC electromagnetic field with a change pattern opposite to the output voltage of the main generator. This magnetic field will inevitably cause the output voltage of the exciter rotor armature and the DC current supplied by the rotating rectifier to the rotor coils of the main generator to change according to the same pattern. Thus, it plays a role in real-time adjusting the magnetic field size of the main generator rotor to maintain good output characteristics of the main generator within the rated load range.
The process of regulating the output voltage of the generator can be represented by the following flow:
Due to the increase in load, the armature voltage of the main generator decreases. After negative feedback regulation, the stator current and magnetic field t of the exciter are adjusted. The output voltage of the exciter rotor armature increases, and the output current t of the rotating rectifier increases. The magnetic field t of the main generator rotor increases, and the armature voltage of the main generator increases. If the voltage of the main generator increases, its feedback regulation reduces the effects of the above links, causing the voltage to return to the rated value. The output voltage can be stabilized by real-time control of the magnetic field of the main generator rotor through the exciter. The negative feedback regulation unit, commonly referred to as a constant voltage excitation device and an automatic voltage regulator, plays an important role in this.